If it's not what You are looking for type in the equation solver your own equation and let us solve it.
31v^2+42v=0
a = 31; b = 42; c = 0;
Δ = b2-4ac
Δ = 422-4·31·0
Δ = 1764
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1764}=42$$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(42)-42}{2*31}=\frac{-84}{62} =-1+11/31 $$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(42)+42}{2*31}=\frac{0}{62} =0 $
| -7=-5y+4(-y+9)-7(7+3y | | (y^2+4)-6(7+y)=-22 | | 2n^2+21n=0 | | F(x)=-3x^2+9x | | -7m-4=1 | | (X^2+7)-3(9+x)=-2 | | -8+5x+12=12x-10 | | 10k+5=45 | | 3-5(2x+3)=8 | | 2(3r-4)=3r-1 | | 5n=-390 | | 5/7b=40 | | 4+1x=72 | | 4x/x^2=7 | | x-7=6+2 | | 3x-8=16-5× | | 6+2s=s | | 3x-7-5x+10=19 | | 9x-8=-3x+40 | | 5.6#w=0.7 | | 39q^2-44q=0 | | 9y^2-8y+1=3y+1 | | 3w^2+43w+14=0 | | 34=3(u+4)+8u | | 3(4n+7)=-3 | | 2n^2-29n+14=0 | | u=2u^2-6 | | 3x+1/2=2 | | R=289x-x^2 | | 5x+40=6x+36 | | 1/8d=28 | | W^2+5w=2250 |